用创新的技术,为客户提供高效、绿色的驱动解决方案和服务

以科技和创新为客户创造更大的价值

公司新闻

大数据分析系统架构(数据分析系统架构设计)

时间:2024-11-16

大数据的技术架构是什么样的?

1、大数据的三大技术支撑要素:分布式处理技术、云技术、存储技术。分布式处理技术 分布式处理系统可以将不同地点的或具有不同功能的或拥有不同数据的多台计算机用通信网络连接起来,在控制系统的统一管理控制下,协调地完成信息处理任务。比如Hadoop。

2、技术是实现大数据价值的关键和推动力。从云计算、分布式处理技术、存储技术到感知技术的发展,我们可以看到大数据从数据采集、处理、存储到结果形成的整个过程。第三层面:实践 实践是大数据价值的最终体现。从互联网、政府、企业到个人,大数据已经在各个领域展现出其美好的前景,并即将实现更多的可能。

3、从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和/或虚拟化技术。

4、大数据技术可以分为数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。以下是详细介绍:数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapReduce产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。

5、大数据平台架构分为三层:原始数据层、数据仓库、数据应用层。原始数据层,也称ODS层,用于存储基础日志数据、业务线上库和其他来源数据,数据仓库通过ETL处理ODS层数据产出主题表。数据仓库分为基础层、主题层和数据集市,ODS层特性侧重查询与变动性大,数据仓库为企业层级,数据集市则偏向解决特定业务问题。

6、其生态系统从0版的三层架构演变为现在的四层架构:底层——存储层 现在互联网数据量达到PB级,传统的存储方式已无法满足高效的IO性能和成本要求,Hadoop的分布式数据存储和管理技术解决了这一难题。

大数据平台有哪些架构

1、在构建大数据平台时,需结合大数据生态圈中的组件及其功能特性来实现数据存储与计算。大数据平台的架构由五层组成:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。数据源层提供各种业务数据,如用户订单、交易信息、系统日志等。

2、大数据平台架构分为三层:原始数据层、数据仓库、数据应用层。原始数据层,也称ODS层,用于存储基础日志数据、业务线上库和其他来源数据,数据仓库通过ETL处理ODS层数据产出主题表。数据仓库分为基础层、主题层和数据集市,ODS层特性侧重查询与变动性大,数据仓库为企业层级,数据集市则偏向解决特定业务问题。

3、数据存储:指的便是数据仓库的建设了,简略来说能够分为事务数据层(DW)、指标层、维度层、汇总层(DWA)。数据同享层:表明在数据仓库与事务体系间提供数据同享服务。Web Service和Web API,代表的是一种数据间的衔接方法,还有一些其他衔接方法,能够依照自己的情况来确定。

4、Lambda架构 大多数架构基本都是Lambda架构或者基于其变种的架构。Lambda的数据通道分为两条分支:实时流和离线。优点:既有实时又有离线,对于数据分析场景涵盖的非常到位。缺点:离线层和实时流虽然面临的场景不相同,但是其内部处理的逻辑却是相同,因此有大量荣誉和重复的模块存在。

大数据平台架构

在构建大数据平台时,需结合大数据生态圈中的组件及其功能特性来实现数据存储与计算。大数据平台的架构由五层组成:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。数据源层提供各种业务数据,如用户订单、交易信息、系统日志等。

大数据平台架构分为三层:原始数据层、数据仓库、数据应用层。原始数据层,也称ODS层,用于存储基础日志数据、业务线上库和其他来源数据,数据仓库通过ETL处理ODS层数据产出主题表。数据仓库分为基础层、主题层和数据集市,ODS层特性侧重查询与变动性大,数据仓库为企业层级,数据集市则偏向解决特定业务问题。

事务使用:其实指的是数据收集,你经过什么样的方法收集到数据。互联网收集数据相对简略,经过网页、App就能够收集到数据,比方许多银行现在都有自己的App。更深层次的还能收集到用户的行为数据,能够切分出来许多维度,做很细的剖析。但是对于涉及到线下的行业,数据收集就需要借助各类的事务体系去完成。

标准大数据平台架构包括数据仓库、数据集市、大数据平台层级结构、数据挖掘等。数据架构设计(数据架构组)在总体架构中处于基础和核心地位。 产品体验结构流程图 产品的功能结构图、产品主要流程图、产品的核心流程等都是产品体验的重要组成部分。

任务调度管理系统整合了数据同步、计算与数据输出流程,管理数据同步与计算任务的执行顺序与资源利用,支持分析师与工程师的作业提交与进度跟踪。对于每个公司的大数据团队,核心开发与维护的正是这个系统,以适应各种个性化需求。

摘要:友盟大数据平台架构主要借鉴了Lambda架构思想。数据接入层通过Kafka集群处理,实时消费由Storm处理,离线计算则利用Hadoop和Hive。数据仓库使用Hive,数据挖掘从Pig向Spark迁移,计算结果存储于HDFS,最后存入HBase并通过ElasticSearch提供多级索引。

大数据基本分析框架包括哪些方面

主流的大数据分析平台构架:Hadoop Hadoop采用MapReduce分布式计算框架,根据GFS开发了HDFS分布式文件系统,根据BigTable开发了HBase数据存储系统。Hadoop的开源特性使其成为分布式计算系统的事实上的国际标准。Yahoo,Facebook,Amazon以及国内的百度,阿里巴巴等众多互联网公司都以Hadoop为基础搭建自己的分布。

Hadoop:Hadoop 框架基于 Map Reduce 分布式计算,并开发了 HDFS(分布式文件系统)和 HBase(数据存储系统),以满足大数据的处理需求。它的开源性质使其成为分布式计算领域的国际标准,并被 Yahoo、Facebook、Amazon 以及中国的百度、阿里巴巴等知名互联网公司广泛采用。

大数据计算框架有:批处理计算框架、流式计算框架、图计算框架、分布式数据库计算框架、深度学习计算框架。批处理计算框架 适用于对大规模的离线数据进行处理和分析。典型的批处理计算框架包括Apache Hadoop MapReduce、Apache Spark等。流式计算框架 适用于实时或近实时处理连续的数据流。

大数据框架主要有以下几种:Hadoop Hadoop是Apache软件基金会所开发的一个开源大数据框架,它提供了一个分布式系统基础架构,允许开发者在集群上处理大规模数据。其核心组件包括分布式文件系统HDFS、MapReduce编程模型和HBase数据库等。Hadoop主要用于数据存储和处理,解决了大数据的存储和管理问题。

数据分析系统架构包含内容涉及哪些?

数据源 所有大数据架构都从源代码开始。这可以包含来源于数据库的数据、来自实时源(如物联网设备)的数据,及其从应用程序(如Windows日志)生成的静态文件。实时消息接收 假如有实时源,则需要在架构中构建一种机制来摄入数据。数据存储 公司需要存储将通过大数据架构处理的数据。

一个完整的系统架构设计应该包括以下内容:功能需求分析:对系统的功能需求进行细致的分析和定义,明确系统需要实现的功能和目标。系统模块划分:将系统按照功能或业务进行模块化划分,划定各个模块的职责和功能,并建立模块间的依赖关系。

技术架构 包括网络安全、防火墙、负载均衡、网关、服务治理、开发服务、安全服务,以及业务模块用到的技术栈。部署架构 包括分区部署,如互联网DMZ区、专线DMZ区、应用区、数据区等;核心组成部分的部署,包括web服务器、应用服务器、数据库等;网络安全策略部署,包括IP和端口、数据流向等。

以下是系统架构设计所包含的主要内容:需求分析:在开始设计之前,首先要充分了解系统的需求和功能。这包括了解各级直接目标的需求,分析业务环境、使用环境和构建环境等因素对系统的影响。系统整体结构设计:根据需求分析的结果,设计系统的整体结构,包括功能模块、层次结构以及模块间的交互方式。

包括市场风险、技术风险、操作风险等。通过风险评估,可以识别出系统的潜在问题,并制定相应的风险管理计划,以确保系统的稳定运行。综上所述,系统分析是一个复杂而关键的过程,它涉及对需求、目标、架构、技术可行性、环境和资源以及风险的全面分析和评估,为系统的设计和实施提供重要的指导和依据。

主流的大数据分析平台构架:Hadoop Hadoop采用MapReduce分布式计算框架,根据GFS开发了HDFS分布式文件系统,根据BigTable开发了HBase数据存储系统。Hadoop的开源特性使其成为分布式计算系统的事实上的国际标准。Yahoo,Facebook,Amazon以及国内的百度,阿里巴巴等众多互联网公司都以Hadoop为基础搭建自己的分布。